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J .  P H Y S .  A ( G E N .  P H Y S . ) ,  1 9 6 9 ,  S E R .  2 ,  V O L .  2 .  P R I N T E D  I N  G R E A T  B R I T A I N  

The flow of rarefied gases between two parallel plates 

G. T. ROBERTS 
Department of Physics, University College of Wales, Aberystwyth 
MS. received 6th February 1969, in reoised form 23rd June 1969 

Abstract. The flow rates of hydrogen, helium, air, carbon dioxide and water vapour 
between two parallel optically flat glass surfaces have been measured. The distance 
between the two surfaces was of the order of 10 pm and the flow experiments were 
carried out with pressures in front of and behind the channels of the order of 10 torr 
and 0.1 torr respectively. A flow equation is presented which describes the flow of the 
gases and the vapour through the channels. 

I. Introduction 
The flow of rarefied gases through fine channels usually lies within the limits of viscous 

flow, with slip on the one hand and diffusive flow on the other. The  exact mode of flow at 
any channel cross section is dependent on the ratio of the number of molecular-wall 
collisions to the number of intermolecular collisions. When the ratio is much larger than unity 
diffusive flow is observed, when the ratio is much smaller than unity viscous flow is observed 
and when the ratio is of the same order as unity a transition region exists which is strongly 
dependent on the slip flow. An equation for the diffusive flow of gases between two parallel 
plates was first derived by Knudsen (1909) by considering the momentum transfer between 
the channel surfaces and the gas phase. von Smoluchowski (1910) showed that there were 
two errors in the momentum transfer method, and went on to derive a shape factor to 
describe the variation in the flow equation from Knudsen’s equation by using the directional 
distribution method first used by Knudsen for long circular capillaries. Hiby and Pahl 
(1952) have extended the directional distribution method to include the effects due to long 
molecular paths and anisotropic spatial distribution resulting from intermolecular collisions 
for circular capillaries and parallel plates. Their work agrees well with the experimental 
results of Knudsen and of Gaede (1913) for parallel plates and for capillaries when the 
Knudsen number CI, the ratio of the channel width or diameter to the molecular mean free 
path, is less than 0.01. In the viscous flow region the usual theoretical analysis leads to an 
equation representing Poiseuille flow, together with an additional flow due to the first 
layer of gas molecules ‘slipping’ over the channel surfaces. Various theoretical methods 
have been used to derive the slip term (see Fryer 1966), but no term explains the variation 
in the slip coefficient observed experimentally by Rilillikan (1923), Stacey (1923) and others. 

Weber (1954), Scott and Dullien (1962) and Fryer (1966) wrote the flow equation as the 
sum of the three flow terms, viscous flow, slip flow and diffusive flow, but with each term 
multiplied by a function representing the fraction of the molecules involved in each particu- 
lar mode of flow, The equations have a minimum in the specific flow as a function of x in 
the region where the contribution of the slip term is of the same order as the contribution 
of the diffusive term. 

The experiments described in this work were carried out with the aim of obtaining 
reliable quantitative results for the flow of hydrogen, helium, air, argon, carbon dioxide and 
water vapour between parallel plates, which could then be used in a theoretical study of the 
slip flow term and to show any surface effects which might occur for water vapour. 

2. Experimental method 
The parallel-plate channels were made by separating two optically flat surfaces of 

crown-glass blocks with a thin metal-foil spacer. The channel length and breadth were 
both between 10 mm and 40 mm and the channel widths, which were measured by observ- 
ing Edser-Butler interference fringes, were between 7 pm and 40 pm. The channel width 
was measured in situ daily, since from day to day it exhibited a random variation of the order 
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of 0.4 p n ~ .  Further, at the beginning and end of every set of experiments the channel width 
found by the optical method was checked against the value obtained from flow experiments 
carried out at atmospheric pressure. At atmospheric pressure the flow could be assumed to 
be entirely viscous since then E is of the order of 100 for air. 

The apparatus was constructed of glass, except for the vacuum vessel housing the 
channel, which was made of brass. A diagram of the apparatus is given in figure 1. 

4 

V a c u u m  
P u m p  

and lead detecting continued 

U 
Figure 1. The apparatus. 

Before any flow experiments were carried out pumping 
until the combined effect of leaks and desorption (outgassing) was less than 2 x torr 1 s-, 
for every part of the apparatus, which corresponds to l0h  of the lowest flow rate of air 
measured. With this condition being satisfied, the rates of flow of hydrogen, helium, air, 
argon, carbon dioxide and water vapour were measured for different differential pressures 
across the channel and different channel widths by using the following procedures. 

For the gases the rate of flow was measured by allowing the gas, flowing at equilibrium 
throcgh the channel C, to collect in a large known volume V, on the low-pressure side of C. 
The rate of change in pressure in TT1, 6P/St, was measured and hence the mass rate of flow 
could be calculated. In  order to simplify the theoretical treatment of the flow the pressure 
behind the channel was kept as low as possible, the limit being set in most cases by the 
accuracy with which 6P/6t could be measured. By using a micromanometer (supplied by 
Furness Controls Ltd) pressure changes of 0.02 torr in V, could be measured to within 
2*5?,, and thus for narrow channels the back pressure could be kept under 0.1 torr; if a 
lower pressure change had been used the error in SP/St would increase proportionally. For 
channels of widths greater than 25 pm back pressures of up to 0.2 torr were recorded which 
were due to the limitations of the pumping system and could not be avoided with the 
apparatus used. Further, in order to keep the experimental error as low as possible the time 
lag between the increase in pressure immediately behind the channel and the increase in 
pressure in the micromanometer had to be much smaller than the time of measurement, T o  
ensure that this was so it was calculated that the diameter of the tube leading from the 
vaculim vessel housing the channel to the volume V, must be greater than 25 mm; the 
diameter used was 30 mm. 

The  gas to be used was supplied to the apparatus already dried, at the required constant 
pressure (between 4 torr and 20 torr), through tap T,, with taps T, and T,, closed. The  
gases were supplied in trade cylinders (except in the case of air) and the pressure kept 
constant by means of a needle valve and a Cartesian manostat (supplied by Edwards High 
Vacuum Ltd). The gases were allowed to flow through the channel into the low-pressure 
side of the apparatus which was continuously evacuated by the pumps. Then after approx- 
imately 15 min, when the pressure across the channel was constant (measured by the 
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Apiezon oil manometer), taps Tll, T, and T,, were closed, in that order, and the rate of 
increase in the pressure of T', measured by the micromanometer. The McLeod gauge was 
used to measure the initial back pressure and to check the micromanometer calibration 
periodically. The  McLeod gauge could not be used to measure GPBt since its absolute 
sensitivity decreases as the pressure increases and since careful readings take much time. 
Blank experiments were performed as a final check that leaks and desorption did not contri- 
bute to the results. The  main sources of error in the experiments were due to the calibration 
of the micromanometer and the value of the volume VI ; however, the error for every result 
was less than 4010. 

The method used for the gases could not be used for vapours, since the amount of vapour 
adsorbed on glass or metal surfaces increases rapidly with increasing pressure. However, 
the flow of water vapour was measured under equilibrium conditions by collecting and 
weighing the vapour in a liquid-nitrogen trap on the low-pressure side of the channel. The  
trap was a small removable U tube and the procedure employed was such that there was no 
chance of any vapour being lost from the trap during the removal and weighing. The  U 
tube, having a constriction in each limb, was sealed onto the outlets from taps T, and T, 
with Apiezon wax, and the whole apparatus was then evacuated until leaks and desorption 
were less than 2 x torr 1 s- l ,  The  required differential pressure was then set up across 
the channel by allowing mater to evaporate amay in the small flask V,, which was kept at a 
constant temperature, and by continuously evacuating the low-pressure side of C. When 
equilibrium between adsorption and desorption had been obtained in the low-pressure side 
(usually after a few hours) tap T, was closed and liquid nitrogen placed around the U tube 
to freeze out the water vapour. After a knoxn time interval of the order of a few hours the 
U-tube constrictions were sealed and the amount of water vapour collected found from a 
series of weighings. Careful blank experiments were carried out to check that adsorption 
and desorption of water vapour on and off the glass apparatus did not contribute to the 
amount of water vapour collected. 

All the experiments were carried out at a channel temperature of 20 OC; RIacpherson 
(1965) showed that for similar channels the mass rate of flow Q is proportional to (L'V/ T)I 
when all other parameters are constant. 

3. The results 
Since the pressure behind the channel was less than 2'3; of the pressure in front for a11 

the experiments, the variable parameters for each gas were the channel dimensions, the 
differential pressure AP and Q. It was shown during the work that Q was proportional to 
the ratio of the channel breadth to the channel length, b/Z, when all other parameters are 
constant; therefore all the results are presented in terms of the variable G where 
G = Q(T/M)1 '21/b .  Unfortunately a comprehensive table of the results cannot be included 
in the space available but all the results are available (see Roberts 1968). A typical set of 
results for a single channel width is shown in figure 2. For simplicity and to help discussion, 
the results are shown as graphs of G against h at a constant AP and are given in figure 3 for 
AP = 7.72 torr (120 mm oil). The  choice of AP = 7.72 torr is arbitrary; similar graphs 
could have been shown for other values of AP. Comparison between the different gases and 
vapours is now possible, since the small variation in h ,  shown in figure 2, can be neglected. 
For h less than 10 pm the values of G, for all the gases and for water vapour, except for 
helium, were the same within the experimental error of 4O/,. For h of the order of 7 pm 
helium shows ralues of G, 15 O,; higher than those for the heavier gases; this will be discussed 
in 5 5. The variation of G, with x ,  (the Knudsen number on the high-pressure side) is also 
discussed in 5 5 ,  where it is shown that all the gases and water vapour are represented by a 
single functionf(cl,), wheref( x,)  is dependent on G,, h and the viscosity coefficient 7. 

4. Theory 
,4s already mentioned, in a theoretical treatment of the flow of gases through fine 

channels the flow can be divided into three rCgimes: viscous flow, slip flow and diffusive 
flow. Adequate formulae for both the viscous and diffusive rCgimes have been developed 
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for circular capillaries and parallel plates, but no formula exists which fully describes the 
slip flow rCgime. Fryer (1966) derived a single equation for gas flow through circular 
capillaries applicable for flow rates extending from viscous flow to diffusive flow, but his 
equations and methods are not easily adapted to describe the flow between two parallel plates. 

21 1 I I 1 

(4 

6 8 IO 12 14 
AP (torr) 

I I I I 
6 8 IO I 2  14 

AP ( tor r )  

(4 
Figure 2. (U)  Variation of G with AP: hydrogen (h = 1 4 . 7 ~ ” ” ) ;  ---- air 
(h = 14.6 pm); --- water vapour (h = 14.8 pm). (b)  Variation of G 
with I P ;  - helium@ = 14+9pm);----  argon (h = 14.7 pm); - - - 

carbon dioxide (h = 14.9 pm). 

T o  simplify the problem of calculating the gas rate of flow between two parallel plates 
when the differential pressure is of the same order as the mean pressure, an element of 
channel length S l  will be considered where the differential pressure 6P across the element 
is much less than the mean pressure of the element. For such an element the usual 
derivation of viscous flow with slip (similar to that of Kennard 1938, p. 294) leads to the 
equation 

bh3 MP 6P hbPM 
1277 RT 61 RT U’ 

Q = - ---+- 

where LT0 is the slip velocity and 77 is the shear viscosity. In  the following treatment of the 
above equation the Knudsen number cc (or in Fryer’s terminology PIP1) is used; thus 
by using the equation = 0.499pCA where E is the molecular mean velocity, h is the 
molecular mean free path and p is the density, a parameter p can be defined where 

The  flow equation then becomes 
6u PbM 

Q = - B””(?!!!)”’ u-+- 61 RT U,a 
12 RT 

where 
tc = h/h = hP/p. 
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Figure 3(a). Variation of G, with h for hydrogen - , air - - - and water vapour 
---. , h P  = 7.72 torr. 
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Figure 3(6). Variation of G, with h for helium - , argon - - - - and carbon 
dioxide - - -* , AP = 7.72 torr. 

4.1. The slip term 
The  slip velocity U. which appears in equation (1) is usually derived by considering 

the rate of change of momentum of molecules colliding with the wall. Let us consider a gas 
flowing over a plane surface with a flow velocity CL: which varies in a direction perpendicular 
to the surface (i.e. along the 2: axis). Maxwell (see Kennard 1938, pp. 295-6) assumed the 
velocity gradient to be uniform above a certain value of x; thus the slip velocity U. is 
obtained by extending the uniform velocity profile to x = 0. His value of LTo was then 
obtained from the momentum transfer equation 

where f is the fraction of molecules diffusely reflected at the wall. But in the treatment 
Maxwell assumed that the viscous phase extends right up to the wall and that the slip 
velocity is the velocity of the edge of the phase relative to the wall. The  assumption might 
be true in the case of specu!ar reflection at the wall since molecules approaching and leaving 
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the wall possess a mean velocity in the direction of flow. However, in the case of diffuse 
reflection, provided diffusive flow is neglected (see §4.3), molecules leaving the wall have 
zero flow velocities; hence the viscous phase does not extend right up to the wall for such 
molecules. Fraser (1931) and Massey and Burhop (1952) have shown that all gases are 
reflected diffusely according to the cosine law, except for the reflections of hydrogen and 
helium off cleaved surfaces where slight specular ref7 ection is observed for glancing angles 
less than 6’. Therefore in the following treatment only diffusive reflection at the wall will be 
considered. 

In  order to satisfy the condition that molecules join the viscous phase at a finite distance 
from the wall, it will be assumed that molecules leaving a surface and travelling towards 
another parallel surface possess viscous and slip velocities between the plane where they 
join the viscous phase and their next surface collision. Hence the slip velocity is assumed to 
be the average velocity in the direction of flow that molecules which have just left a wall 
attain when they join the viscous phase. The value of the slip velocity may therefore be 
different from the value derived by Maxwell, since Maxwell derives U. from the momentum 
transfer when molecules collide with the wall. 

The slip velocity mill therefore be derived as follows. We take the element 61 and con- 
sider the momentum transfer when molecules join the viscous phase by attaining the slip 
velocity U,. Since molecules leaving a wall have zero flow velocities, then as shown by 
Present and Pollard (1948) the rate at which these molecules gain momentum from the 
viscous phase per unit area parallel to the mall is $nmEU,, where n and m are the molecular 
density and mass. But this can be equated with the shearing stress in the gas (see Kennard 
1938, p. 296); hence, after substituting for 77 = inmEX, the slip velocity becomes 

and equation (1) becomes 

where the slip term is 2 and the viscous term is ~ / 6 .  
Although the value of U. just derived is twice the value derived by Kennard (1938, 

p. 296), the derivation differs from that given by Kennard only in that the kqdz)/dn term 
in Kennard’s equation has been neglected, In  Kennard’s equation the term represents the 
momentum transfer due to the assumed uniform velocity gradient of molecules approaching 
the wall. Rut in the present derivation the term is neglected, since the velocity gradient of 
molecules in transit between the wall and plane where they join the viscous phase is zero. 
However, since the definition of the viscous phase is different from that assumed by Kennard, 
the value of the slip coefficient derived is compared with previous values in § 4.2. 

The  slip term in equation (2) is incomplete since it does not vanish as the pressure 
approaches zero. But as only those molecules in the viscous phase can assume the slip vel- 
ocity, the slip term must be multiplied by the fraction of molecules in the viscous phase 
compared with the total number of molecules. T o  find the fraction it is assumed that after 
a molecule has left a wall it joins the viscous phase when it collides with another molecule 
whose last collision was an intermolecular collision. The  assumption may be justified by 
the fact that molecules possess viscous and slip velocities only if they have a mean velocity 
in the direction of flow and they only have such a velocity if their previous collisions were 
intermolecular collisions. For the assumption to be utilized, for all molecules leaving a 
wall, the average distance travelled by molecules when they move from one layer to another 
layer distance x away is first calculated using the equations due to Kennard (1938, pp. 60-4) 
and the average distance can be shown to be 2x. Let us consider now a thin layer EF 
between two parallel plates of cross section ABCD as shown in figure 4. The number of 
molecules entering EF from above is $ n E  and similarly for molecules entering from below. 
But of the molecules entering E F  from above and below, the number moving directly to 
E F  from CD and AB without being involved in an intermolecular collision, by using the 



The $ow of rarefied gases between two parallel plates 691 

result of the average distance travelled, is 
1 -2 (h -  1 - 2 x  
-nEexp( 4 ’)) and - f i P e x p ( T )  4 

respectively. Therefore the fraction of molecules in EF with their last collision having 
taken place at a wall is 

I 
I ! r  

A B 

Figure 4. Channel cross section. 

Now consider molecules leaving AB and moving towards CD. At a distance x from AB let 
the fraction of molecules still moving without having been in collision with another mole- 
cule, whose last collision was an intermolecular collision, be f ( x ) .  But the fraction of the 
total molecules colliding in 6x is 2Sx/h;  thus the fraction of molecules joining the viscous - 
phase in 6x is 

f ( x ) -  f ( x + S x )  = ~ 

h 
By using Taylor’s theorem, this becomes a differential equation which when solved becomes 

At  the surface where x is zero, f ( x )  must be unity; then 

At  any distance x from the wall the fraction of molecules joining the viscous phase in element 
ax is -f’(x)6x. Then the number of molecules in transit at any time between the element 
ax, where the molecules joined the viscous phase, and the wall, using both walls of the chan- 
nel, is -na(h-x)f’(x)6x where a is the wall surface area associated with 6%. But the total 
number of molecules is nah; thus the fraction of molecules in the viscous phase is 

and the slip term becomes 

T h e  variation of fs( E )  with 3, as calculated numericall)? by using a computer, is shown in 
figure 6. 
4.2. The z.iscous term 

As already explained, for low values of 5: all the molecules in a channel cannot support 
viscous flow; thus a correction is applied to the term a/6 in equation (2). Scott and Dullien 
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(1962) and Fryer (1966) assumed that all the molecules, except those travelling on wall-to- 
wall collision paths, were in the viscous phase. A better definition of the viscous phase has 
been given in 9 4.1 which will now be used to derive the viscous term. Further, since a 
molecule supports viscous velocities between the points where it joins and leaves the 
viscous phase and not between the channel walls, another correction is applied, this time to 
the width of the viscous phase. 

Let us consider figure 4 and let molecules travelling from AB towards CD join the 
viscous phase at EF; thus these molecules are in the viscous phase between the plane EF 
and the wall CD. Therefore for these molecules the channel width as used in the viscous 
term should be reduced from h3 to (h- x ) ~ .  By using equation (3) the viscous term becomes 

This integral has been evaluated by numerical analysis and the variation off,(r) with 3: 

is shown in figure 6. The  fractional difference betweenf,(x) and u/6 can be shown to 
become zero as tl becomes large. 

In  4 4.1 the slip coefficient uncorrected for the fraction of molecules in the viscous phase 
was shown to be 2, which differs considerably from the value of $ used by Scott and Dullien 
(1962) and Fryer (1966), and from the value of unity derived by Kennard (1938). However, 
the value of the slip coefficient can be accurately compared with previous values only when 
the definition of the slip velocity and the reduced width of the viscous phase are taken into 
account. Let k be the slip coefficient as used by Knudsen (1909), Kennard (1938), Rlilli- 
kan (1923), Fryer (1966) and others; then the usual viscous flow with slip is given by 

when the fraction of molecules in the viscous phase has been neglected. But b? using 
equations (4) and ( 5 )  and neglectingf’(x), which represents the fraction of molecules in the 
viscous phase, the flow equation becomes 

Q = *(-) n,W (m + 2(h - .,)” 
2 2RT 6hh2 61 

where x is defined as in 4 4.1. For molecules leaving a wall it can be shown that if x is 
greater than 5 then, to within 0*50/;, x = + A ,  since under such conditions molecules on 
average join the viscous phase after leaving a wall with their second intermolecular collision. 
Thus it is shown that K is given by 

and is a function of tl. The variation of k with tl is shown in figure 5 and the values of k are 
in good agreement with most previous experimental results. Knudsen (1909) quoted a value 
of k = 1.33 for oxygen and carbon dioxide flowing through circular capillaries, but this is 
the value to be expected since x was between 2 and 8. Further, Millikan (1923) had deter- 
mined the values of k from experiments on the deviation from Stokes’s law for falling oil 
droplets, where x was of the order of 25, and except for Shellac surfaces the results are 
within the experimental errors to the value of 1.14 expected from figure 5 .  Because of the 
variation of k with tl, the revised definition of the slip velocity, giving a slip coefficient of 
2, will be used in the rest of the work, but it should be remembered that the variation in k 
with Q is a direct result of using the revised definitions of the slip velocity and the viscous 
phase. 

4.3. The diffusive term 
During the discussion of the slip term it was assumed that the density gradient of 

molecules leaving a wall does not contribute to the flow. This is not strictly true since diffu- 
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sive flow occurs down the pressure gradient, which in the limit of u tending to zero becomes 
the pure molecular flow. 

Equations representing diffusive flow through circular capillaries and between parallel 
plates have been derived by Hiby and Pahl(l952) by considering the effects on the flow of 
long molecular paths and anisotropic spatial distribution of collision partners. Unfortunately 
their equations are only valid for values of x less than 0.01, but the method which they used 
for circular capillaries has been extended by Roberts (1968) to cover all values of u for 
parallel-plate channels. A detailed derivation is long and thus will be published at a later 
date but the result is given in figure 6 and by the equation 

Qd = -”B(%) 1’2fd(x) - S X  

2 2 R T  61 
where 

f&) = - - - -+- + F,(+)). 
77 2 (4  3u 2x2 2F1(u) u2 

Value  o f  k f o r  c( = cb Value  o f  k f o r  c( = cb 

I I I I 
5 I O  15 20 

N 

Figure 5.  Variation of the slip coefficient k with U. 

T h e  first three terms are given in Hiby and Pahl’s equation (3.8) where 
n/2  

F,(u) = 1 sin3p cosp exp 
0 

The  F2( x )  term represents the additional flow due to anisotropic spatial scattering of collision 
partners and has been evaluated by Roberts (1968) by using a similar method to that used by 
Hiby and Pahl for circular capillaries and by solving a number of integrals with a computer. 
The  term is a correction to the usual diffusive equation and is of the order of 20% of the 
other three terms infd(u). As in figure 6fd(u) tends to zero as U becomes large and tends to 
the value of 2 (3 -4  lg$u)/v given by Hiby and Pahl’s equation (3.10) as u becomes small, 
where 4 = 1.781, This is not the same as Knudsen’s equation but this is to be expected since 
von Smoluchowski (1910) has shown that Knudsen’s equation is correct only for circular 
cross sections. 
4.4. TheJEow equation 

greater than the differential pressure, is given by the sum of the three flow terms; thus 
The  flow equation at any cross section of the channel, where the mean pressure is much 
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The variations off(&) and its componentsfv(a),fs(x) andf,(a) with a are shown in figure 6, 
where a minimum in the specific flow is shown to be at x = 0.5. 

q ( l o g a r i t h m i c  s c a l e )  

Figure 6. Variation of f(ct) - , f V ( 4  - - - , fdct) - - - -  and 
.fd ( x )  - - - - - - - - - - with ct. 

But in the experiments carried out it was not possible to assume that the mean pressure 
was much greater than the differential pressure ; thus equation (6) is integrated numerically 
by a computer between the limits of a = 0 and x = ap, since for all the experiments the 
pressure behind the channel could be assumed to be zero. The variations off(a,) and its 
components with xP are shown in figure 7 .  The values of G for any gas are then given by 

and thus G is completely defined by h, ,B and E,, or since xp = hilP/,$, G is defined by h, /3 
and Ap. 
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5 .  Discussion 
The experimental results for all the gases and vapours used agree with the theory to 

within the experimental error of 4% and are all represented byf( a P )  in figure 7 .  The parallel- 
plate channels used varied in width between 5.28 pm and 44.4 pm in the case of hydrogen 
and helium, and between 7.10 pm and 44.4 pm in the case of air, argon, carbon dioxide and 
water vapour. The  differential pressure across the channel was in all cases between 5 torr 
and 15 torr; thus the range of aB used was between 0.2 and 17.7. Table 1 shows the values 
of xp for AP = 7.72 torr for the greatest and the least channel widths used, together with 
the values of f l  for all the gases and vapours used, at a temperature of 20 OC. 

Table 1. Values of p and the range of a, used at AP = 7.72 torr 

Carbon Water 
Hydrogen Helium Air Argon dioxide vapour 

P (g s-  2 ,  12.21 19-03 6.605 6.893 4,318 4.530 

(min) 0.44 0.28 1.1 1.0 1 . 7  1.6 
&P "1 3.3 2.4 6.9 6.6 10.6 10.1 

Owing to the agreement between the theory and the experimental results, equation (7) 
can be used to represent all the experimental results, thus showing that for the range of tcP 
used G is a function of h, p and a p .  But for a certain gas at a certain temperature ,8 is a 
function of 7 ,  and ilp is a function of h, 7 and A P ;  hence G is a function of h ,  7 and h P  only. 
Further, figure 7 is a universal curve whenever the pressure on the low-pressure side of the 
channel can be assumed to be zero. 

One of the characteristics of past experiments on the flow of gases through artificial 
channels has been a minimum observed in the variation of the specific flow with pressure. 
The minimum was not observed directly in the experiments already described but the 
presence of a minimum is shown theoretically at a = 0.5 (see figure 6) where the mean 
pressure in the channel is much greater than the differential pressure across the channel. 
However, for channels where the differential pressure is of the same order as the mean 
pressure the minimum becomes a point of inflection at xp = 0.5 which is shown in figure 7. 
The point of inflection is also shown from the experimental results given in figure 3(b) by 
the fact that the graph of values of G, for helium, which are higher than those for carbon 
dioxide (and the other gases) for h less than 9 pm, crosses the curve for carbon dioxide in the 
region of h = 11 pm. The crossing of the two curves arises theoretically from the fact that 
the point of inflection in the variation of G, with h occurs at h = 9.26 pm for helium and at 
1.13 pm for carbon dioxide, owing to the different values of f l ,  19-03 and 4-03 respectively. 
Thus it is seen that at a certain channel cross section where = 0.5 a minimum in the 
specific flow occurs, but that this minimum is not observed experimentally when the differ- 
ential pressure across the channel is greater than the mean pressure in the channel. 

When the experimental results for water vapour were compared with those for the gases 
no detectable difference could be observed; thus any surface effects which might occur for 
water vapour did not contribute to the rates of flow measured. Although surface effects 
were not observed, it may still be possible to observe such effects for parallel-plate channels 
for smaller plate separation, but the apparatus used in the experiments described could not 
be extended to measure such low rates of flow. 

Further work is now being planned on the flow of gases and vapours through finer 
channels of the order of 0.5 pm and at small differential pressures. 
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